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ARTICLE INFO ABSTRACT

Handling Editor: Dr P. Vincenzini Lightweight phenolic matrix composites are highly potential in ablative thermal protective materials for future

aerospace vehicles, and hybrid modification is considered as one of effective ways to improve the oxidation and

Keywords: ablation resistance of phenolic matrix. Herein, the co-continuous silica zirconium hybrid phenolic resin (SZRx)

Sol-gel processes was synthesized, which can be used to prepare lightweight ablation resistant aerogel composites by the sol-gel

gompf:;ues method. The SZRx aerogel showed stable porous structure and excellent hydrophobicity, and the silicon zirco-
'Orosl1

Thermal properties nium hybrid greatly improved the high temperature carbon residue and oxidation resistance of phenolic resin.

710, The SZRx aerogel composites also possessed excellent integrated characteristics of heat protection and insulation,
with a linear ablation rate as low as 0.032 mm/s and a back temperature below 200 °C. The synergistic effect of
silicon and zirconium formed the multiphase ceramic layer (C, SiOg, SiC and ZrO,) with the sea-island-like
structure on the surface of the composite material, which can effectively resist high-temperature ablation and
aerodynamic exfoliation. This can indicate that silicon zirconium dual element hybrid phenolic resin is the highly
competitive matrix for lightweight and ablation resistant composite materials.

1. Introduction

Phenolic resin has important applications in the field of aerospace
ablation thermal protection due to its excellent flame retardancy, good
processability, high char yield, and low cost [1-3]. The lightweight
design of thermal protection materials is one of the effective ways to
improve the load and penetration ability of aircraft. For example, the
phenolic impregnated carbon ablators (PICA) developed by NASA is the
typical lightweight ablative thermal protection material based on
phenolic resin, which has been successfully applied in many planetary
exploration missions over the past thirty years [4]. In recent years, fiber
reinforced phenolic aerogel composites (FPAC) have been widely used
in the field of aerospace thermal protection owing to their advantages
such as integrated thermal protection and insulation, low density, low
cost, etc. [5-7]. However, the antioxidant and ablative properties of
phenolic resins are gradually unable to meet the needs of the aerospace
thermal protection field under harsh heat flow environments [8,9].

Silicon hybrid modification is considered as the highly promising
strategy for improving the antioxidant and ablative properties of
phenolic resins [10]. Silicon modified phenolic resin generates residual
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silica during the ablation process, which forms the liquid phase at high
temperatures and serves as the barrier of reactive oxygen species and
heat, effectively improving the antioxidant and ablation properties of
phenolic resin. Chen et al. used (3-aminopropyl) triethoxysilane as the
silicon source to obtain the organic silicon hybrid phenolic resin by one
pot method, and prepared the fiber preform reinforced hybrid phenolic
aerogel composite. The material showed low density and efficient heat
insulation characteristics, and the introduction of organic silicon
significantly improved the oxidation resistance and ablation of the
phenolic composite [11]. Xiao et al. demonstrated the mechanism of the
improvement of antioxidant performance of phenolic compounds silicon
hybridization by molecular dynamics simulations. Si atoms belonging to
the Si-O-Si framework of silicon can be bonded to the molecular
structure of PR to inhibit the thermal decomposition of phenolic frag-
ments. The formation of clusters rich in silica is the main reason for the
increased antioxidant performance [12].

However, under higher temperature thermal environments
(>1800 °Q), silicon modified phenolic resin exhibits weak antioxidant
ability due to the gradual evaporation of silica. It is reported that
introduction transition metal elements such as Ti [13,14], Zr [15,16]
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into the main or side chains of siloxane can further improve the anti-
oxidant and thermal stability of organosilicon. Jiang et al. [17] suc-
cessfully synthesized zirconium hybrid silicone resin by two-step sol-gel
method. The addition of Zr greatly improved the heat resistance of sil-
icone resin. The results of the investigation showed that zirconium
hybrid modification showed the potential synergistic effect on the
thermal stability of silicone resin. In addition, the introduction of tran-
sition metals could promote the catalytic graphitization on pyrolytic
carbon (PyC) [18,19], moreover transition metal oxides usually possess
higher melting points than silicon, indicating that the co-hybridization
modification of phenolic by transition metals and organosilicon may
offer positive effect on the application of FPAC in more severe thermal
environments.

In this work, a new type of Si-Zr dual element hybrid phenolic resin
was prepared by a two-step method. Further, Si-Zr hybrid phenolic resin
(SZRx) aerogel composites with the co-continuous structure were
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obtained by the sol gel process using quartz fiber needle felt (Qf) as the
macro framework. Zirconium propionate was selected as the precursor
of Zr in this study, which has relatively high Zr content compared to
commonly used zirconium oxychloride and zirconium n-propoxide [17,
21], as well as an appropriate hydrolysis rate. The effects of Si/Zr ratio
on the microstructure, hydrophobicity, thermal stability and
high-temperature oxidation resistance of SZRx aerogels were investi-
gated. Furthermore, we carried out the oxyacetylene flame test on SZRx
aerogel composite, and explored the ablation mechanism of potential
synergistic effect of silicon zirconium on the phenolic aerogel composite
under the harsh environment of high temperature and aerodynamic
exfoliation.
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Fig. 1. Synthesis of SZRx and aerogel composites.



H. Fuetal
2. Experimental
2.1. Materials

The methyl phenolic resin solution (PR, 30w%, isopropanol as sol-
vent) was obtained from Hubei Huahang New Materials Co., Ltd., China.
The quartz fiber needle felt with a density of 0.30 g/cm® was purchased
from Jiangsu Tianniao High tech Co., Ltd. in China. Deionized water was
prepared in the laboratory. Methyltrimethoxysilane (MTMS), methyl-
triethoxysilane (MTES), dimethyldiethoxylsilane (DMDES) and hexa-
methylenetetramine (HMTA) of analytical grade were purchased from
Aladdin Industrial Inc. Zirconium propionate (ZP, C¢H;00s5Zr), acety-
lacetone (Acac) and acetic acid were provided by McLean Inc. All re-
agents were used without further processing.

2.2. Preparation of silicon-zirconium hybrid phenolic resin (SZRx) and
SZRx aerogel composites

SZRx were prepared by two-step method (Fig. 1). Firstly, organic
silicon precursor (OSP) and Zirconium chelate (ZC) were synthesized
through hydrolysis polymerization (step 1). MTMS, MTES, and DMDES
were weighed in a molar ratio of 1:1:1, then poured into a flask and
quickly stirred at room temperature for 10 min. Then, according to the
molar ratio of acid, water, and alkoxy groups of 0.001:0.8:1, acetic acid
and water were evenly mixed, and slowly dropped into the above
organic silane mixed solution. The flask was placed in 50 °C water bath
and magnetically stirred for 1 h to obtain the solution of the OSP. The
ZP, Acac, and water were added to a flask containing isopropanol so-
lution at the molar ratio of 1:1:3. The chelation reaction was carried out
in water bath at 50 °C, and the ZC solution was obtained by magnetic
stirring for 1h.

According to the formula in Table 1, the OSP solution was added to
the phenolic resin solution and magnetically stirred in 70 °C water bath
for 1 h to obtain a silicon modified phenolic resin solution (step 2). The
ZC solution was further added to the solution and stirred for 5 h to
finally obtain a silicon zirconium hybrid phenolic resin solution.
Phenolic resins with different Si/Zr ratios were denoted SZRx (x =0, 1,
2,3,4).

Finally, the SZRx aerogel composites were prepared by vacuum
impregnation and sol gel process (step 3). The SZRx and HMTA were
mixed at the weight ratio of 20:1 and stirred for 60 min to obtain the
impregnation solution. The impregnation solution was injected into the
metal container containing quartz fiber felt through vacuum induction
until the felt was completed filled with resin. The metal container was
sealed and placed in an oven at 100 °C, and the sol-gel reacted for 24h.
After curing, the composite was taken out and dried in oven at 60 °C
under normal pressure for 48h to get SZRx aerogel composite. In addi-
tion, SZRx aerogel without fiber reinforcement was also prepared.

2.3. Characterization

Fourier transform infrared spectroscopy (FT-IR, Nexus, US), 29gi
nuclear magnetic resonance (NMR, Bruker AVANCEIII 400 M, Germany)
and atomic force microscopy (AFM, SPM-9700, Japan) were used to
analyze the molecular structure of SZRx. The thermogravimetric

Table 1

Formula for SZRx synthesis.
Samples  Phenolic resin Organic silicon Zirconium Si/Zr

solution (g) precursor (mol) precursor (mol) ratio

PR 100 0 0 /
SZRO 100 0.5 0 /
SZR1 100 0.475 0.025 19:1
SZR2 100 0.45 0.05 9:1
SZR3 100 0.4 0.1 4:1

SZR4 100 0.25 0.25 1:1
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analysis (TGA) of the SZRx aerogel in argon atmosphere was performed
using the thermogravimetric analyzer (STA449F3, NETZSCH) at the
maximum temperature of 1000 °C and heating rate of 10 °C/min. The
bulk density of SZRx aerogel composites was measured based on sample
volume and weight. The static water contact angle of SZRx aerogel was
measured and calculated by the contact angle analyzer (JY-82B, Ger-
many). The high-temperature oxidation resistance of SZRx aerogel was
tested by static pyrolysis in muffle furnace at 1000 °C for 20 min. The
microstructure and elemental analysis were observed by scanning
electron microscopy (SEM-EDS, JSM-7500F, Japan) with energy
dispersive spectrometer. The elemental state and phase analysis were
conducted using X-ray photoelectron spectroscopy (XPS, ESCALAB
250Xi) and X-ray diffraction (XRD, Empyrean). The degree of graphiti-
zation of SZRx aerogel composites was investigated by confocal Raman
microscopy (RENISHAW, InVia). The bulk density was measured based
on sample volume and weight. The thermal conductivity of samples was
tested by the plate method by the thermal constant analyzer (TPS 25008,
Sweden). The ablation performance of the sample was tested by the
oxygen acetylene flame system with a flame heat flux density of 2.0
MW,/m? for 60 s, and the temperature was recorded on the back of the
sample using the infrared thermometer. The main parameters of the
oxygen acetylene ablation device were shown in Table 2.

3. Results and discussion
3.1. Molecular structure of SZRx and micro morphology of SZRx aerogel

The organic silicon precursors contain a large amount of Si-OH,
which can trigger esterification reaction with PR to obtain the silicon
hybrid phenolic resin [20]. Zirconium propionate didn’t form zirconia
precipitation under the chelation effect of Acac due to the circumvent of
severe hydrolysis [21], which allowed the zirconium precursor to pre-
sent matched hydrolysis rate for copolymerization with the organic
silicon precursor and PR. The final synthesized SZRx exhibited the
transparent and clear state at macro (Fig. 1). The results of FTIR spectra
of PR and SZRx showed that SZRx possessed wide peak of stretching
vibration of Si-O-Si backbone at 1140 cm ™' and 440 cm™! [9,10], as
well as the characteristic peak of Si-O-Ph at 920 em?, compared to PR
(Fig. 2a and b) [20]. In addition, the 295i NMR spectrum also identify
either the signal owned to Si—O-Ph peak at around —57 ppm (Fig. 2d)
[11]. This indicates that OSP underwent self-polymerization reaction to
form long chains and some organic silicon were bonded on the molec-
ular chains of phenolic. Meantime, the FTIR spectra of SZR1-SZR4 also
showed weak characteristic peaks of Si-O-Zr at 610 cm ! [22],
implying that some zirconium precursors exist in the SZRx in form of
Si-O-Zr. Additionally, both of SZR0 and SZR4 exhibited one broad peak
near 17.5° corresponding to adjacent chains of the linear polymer [18],
indicating that Si and Zr exists as organic covalent bond in SZRx rather
than oxidized state (Fig. 2e). The microstructure and elemental distri-
bution of SZR4 in a solvent-free state also confirmed this point. Fig. 2f ~
h showed that no obvious particle structure was found in SZR4 resin at
both the micro and nano scales. EDS mapping results showed that the
distribution of Zr was relatively uniform, while the distribution of Si was
slightly uneven, mainly due to the micro phase separation of organic
silicon and phenolic (Fig. 2i).

After curing, the FTIR spectrum of SZRx showed that the stretching
vibration peak (-CHs, C-H on the benzene ring) was significantly

Table 2
Oxygen acetylene ablation parameters.
Heat flux Torch inner Distance Gas flow (L/ Pressure
density (MW/ diameter (mm) (mm) h) (MPa)
m?)
(023 CoHy (023 CoHa
2.0 £ 02 2 10 714 660 0.4 0.095
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Table 3
Thermal stability parameters of PR and SZRx aerogels.
Samples Ti0% (°C) Tmax (°C) Rioo0°c (%)
PR 270.4 515.7 51.8
SZRO 392.5 547.5 53.9
SZR1 420.5 552.5 54.7
SZR2 441.4 553.9 56.1
SZR3 412.0 553.5 56.9
SZR4 406.7 544.7 58.0

weakened at 2870-3050 c¢m [23], and the C-N stretching vibration
peak appeared at 1256 cm ™' (Fig. 2¢). This indicated that the curing
mechanism of SZRx was basically the same as that of PR. The curing
agent HMTA was thermally decomposed to produce dimethylhydrox-
ylamine, formaldehyde, and ammonia, which reacted with PR to form
cross-linked curing.
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To further investigate the state of PR and organosilicon zirconium in
SZRx, AFM examination was performed on the cured SZRx (Fig. 3).
Based on the phase angle difference of the actual vibration of probe
contacting with PR chains and organosilicon (zirconium) chains, the
microstructure of the cured brittle sections of PR, SZR0, and SZR4 were
obtained, and PR chains presented in the light region and organosilicon
(zirconium) chains in the dark region. Compared with pure PR (Fig. 3d),
organosilicon hybrid PR (SZR0) showed more obvious light dark
boundary at the 1 pm scale, demonstrating that the micro phase sepa-
ration phenomenon between PR and organosilicon molecular chains in
SZRO (Fig. 3e). This may be ascribed to the difference in solubility pa-
rameters between organosilicon and PR, and the phase separation rate is
greater than the curing rate. However, the phase diagram of SZR4
showed the relatively uniform phase morphology of light and dark
intercross (Fig. 3f), presenting the micro-zone co-continuous structure
[9]. This may be ascribed to the copolymerization of zirconium
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Fig. 3. AFM images. Height image of PR (a), SZRO (b) and SZR4 (c); Phase image of PR (d), SZRO (e) and SZR4 (f).

precursor and organosilicon, which improve the compatibility between
organosilicon and phenolic aldehyde, and the chelating effect of metal
elements with PR make more uniform distribution of zirconium pre-
cursor [24].

The micro morphology of the aerogels prepared by PR and SZRx
respectively, were showed in Fig. 4a—f. The PR aerogel showed the
typical pearl chain-like three-dimensional network porous structure,
and the PR particles were uniform in shape, while the silicone hybrid
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phenolic SZRO aerogel displayed the coarse skeleton and uneven particle
shape, which mainly resulted from the microscopic phase separation of
silicone and phenolic during the curing process [25]. With the increased
of zirconium relative content, the morphology of SZRx aerogel gradually
recovered to similar morphology of pure PR aerogel. Further, the dis-
tribution of PR and SZRx aerogel particle size could be analyzed by
Image J software. The results showed that the average size of PR aerogel
gel particles was 46.5 nm, while SZR0 reached 94.8 nm. The average size
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of aerogel particles was gradually reduced as the reduction of Si/Zr
ratio. Finally, the average size of SZR4 aerogel particles was 45.9 nm,
which was almost the same as PR. The energy spectrometer detected
that the surface elements of SZR4 aerogel particles were C, O, Si, Zr, and
the weight ratio was 70.9:17.5:3.2:8.4 (Fig. 4j), which was close to the
feeding ratio of silicon zirconium, indicating that the silicon and zirco-
nium elements were distributed evenly during the formation of SZR4
aerogel particles. It also confirmed that there was no obvious phase
separation of silicon zirconium hybrid phenolic resin during the curing
process. Therefore, the micro morphology of hybrid resin aerogel can be
regulated by the change of Si/Zr ratio, which make the phenolic resin
can form the stable aerogel structure and realize the hybrid modification
of silicon zirconium elements.

Besides lightweight property (Fig. 4g), SZRx aerogel showed low
bulk density of 0.18 g/cm? and excellent hydrophobicity, which don’t be
wetted by pure water and ink (Fig. 4h). As shown in Fig. 4i, the water
contact angle of pure PR aerogels was 108°, as the introduction of a large
amount of hydrophobic alkyl groups by organic silicon hybridization,
the water contact angle of SZRO aerogels increased to 154°. Although
zirconium precursors were added and the water contact angle of aero-
gels decreased with the reduction of Si/Zr ratio, the water contact angle
of SZR4 aerogels still was 136°, which showed good hydrophobicity.

3.2. Thermal stability and antioxidant performance of SZRx aerogel

TGA was used to test the thermal stability of PR and SZRx aerogels,
respectively. In argon atmosphere, PR and SZRx aerogels has similar
thermogravimetric curves from room temperature to 1000 °C, but the
weight loss rate of SZRx aerogels was significantly lower than PR
(Fig. 5a). From the data of temperature with 10% weight loss (T10%),
residual rate at 1000 °C (Rj000°c) and maximum thermal decomposition
temperature (Tyax), SZRx aerogels showed higher residual rate and
thermal stability than PR (Table 3). Many studies reported that organic
silicon hybridization can improve the thermal stability of phenolic
aldehyde [12,20,28,29], and the TGA data of PR and SZRO also illustrate
this point. However, it was worth noting that the thermal stability of
silicon zirconium hybrid phenolic aldehyde was better than that of
organic silicon hybrid phenolic aldehyde. As the relative content of
zirconium increased, the Rjgpoec of SZRx gradually increased to the
maximum of 58.0%, which was 12% and 8% higher than PR and SZRO,
respectively, and Tyax of SZR1-SZR4 also has improvement (Fig. 5b).
This may be ascribed to the inherent drawback of organic silicon hybrid
phenolic resin, which organic silicon undergoes the back-bite reaction at
high temperatures, produces a large amount of volatile cyclic siloxanes
[26,271], and eventually hinders the improvement of thermal stability. In
comparison, the chelating effect of zirconium can improve the
compatibility between organic silicon and phenolic and the stable zir-
conium oxide generated by high-temperature pyrolysis may had an
inhibitory effect on the formation of cyclic siloxanes. Thus, the silicon
zirconium hybridization can further increase the thermal stability of
resin.
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To further investigated the antioxidant properties of PR and SZRx
aerogels respectively, aerogel samples were placed in the muffle furnace
at 1000 °C for static pyrolysis for 20 min. The photographs of aerogel
samples before and after pyrolysis were shown in Fig. 6a. From the
change of aerogel sample size, after high-temperature pyrolysis, PR
aerogel experienced more serious volume shrinkage than SZRx aerogels.
The weight residue rate of PR aerogel was only 14.2%, while SZRx
aerogel exceeded 34%, the highest was 40.6% of SZR2 (Fig. 6b), which
demonstrated that the high-temperature oxidation resistance of SZRx
aerogel are greatly improved. The microscopic morphology showed that
the surface of the residue of PR aerogel was loose and porous after high-
temperature pyrolysis (Fig. 6¢), and the products of SZR2 and SZR4
aerogel after pyrolysis were relatively hard. Although there were a small
number of holes and cracks on the surface owing to the escape and
contraction of pyrolysis gas, the surface was generally dense. In addi-
tion, the Si/Zr ratio also has impact on the oxidation resistance of hybrid
resin aerogel. The SZR2 aerogel with a Si/Zr ratio of 9:1 has the highest
weight retention rate. According to the microscopic morphology and
energy spectrum analysis, it can be inferred that the surface was covered
with the dense silica liquid film (Fig. 6d), which can effectively protect
the hybrid resin from the attack of oxygen. However, the hybrid resin
SZR4 aerogel with a Si/Zr ratio of 1:1 formed the incomplete liquid film
due to the relative reduction of silicon content, and more zirconia par-
ticles were presented on the surface (Fig. 6e), which reduced the surface
compactness and ultimately lead to the reduction in weight residue rate.

3.3. Ablation resistance and its mechanism of SZRx aerogel composites

Table 4 showed the bulk density and thermal conductivity of PR and
SZRx aerogel composites. When the solid content of phenolic resin so-
lution was the same, the silicon zirconium hybrid and silicon zirconium
ratio had little effect on the density of aerogel composites, and the bulk
density of the five samples was about 0.51 g/cm®. However, the thermal
conductivity of the sample showed a trend of increasing and then
decreasing. Silicon hybridization increased the thermal conductivity of
aerogel composites, further introduced zirconium, and with the increase
of the relative content of zirconium, the thermal conductivity gradually
decreased to the initial state. Combined with the above analysis of the
micro morphology and pore characteristics of aerogel, the influence of
hybridization on the pore size of aerogel led to the change of thermal
conductivity.

The oxygen acetylene flame test was the main method for evaluating
the ablation performance of composite materials in simulated thermal
environments, and its main device was shown in Fig. 7a. Under the flame
ablation of 2.0 MW/m? heat flux, the thermal response of the sample
surface quickly reached to 1900 °C. After 60 s of ablation, the linear
ablation rate and weight ablation rate of PR aerogel composites were
0.059 mm/s and 0.015 g/s respectively, while the linear ablation rate of
silicon zirconium hybrid phenolic aerogel composites was the lowest of
0.032 mm/s of SZR2, and the weight ablation rate was the lowest of
0.01 g/s of SZR1 (Fig. 7b). The above results indicated that the ablation

DTG
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Fig. 5. TG curve (a) and DTG curve (b) of PR and SZRx aerogels.
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Table 4

Bulk density and thermal conductivity of SZRx aerogel composites.
Samples PR SZRO SZR1 SZR2 SZR3 SZR4
Bulk density (g/cm?) 0.512 0508 0.513 0517 0505 0.510
Thermal conductivity 0.092 0.135 0.129 0.112 0.108 0.102

(W/(m-K))

resistance of phenolic aerogel composites was significantly improved by
silicon zirconium hybrid.

The high temperature thermal insulation properties of PR and SZRx
aerogel composites were further studied. Fig. 7c showed the cross-
section of the samples of PR and SZR2 aerogel composites after abla-
tion. According to the color change, the cross-section could be divided
into ablation surface, carbonization and original layer. The improve-
ment of oxidation resistance and ablation resistance of silicon zirconium
hybrid made SZR2 aerogel composites have the shallower ablation
surface and higher original layer than PR, which meant that SZR2 can
retain more complete porous structures at high temperatures, thus
blocking heat transfer effectively. Fig. 7d showed the change curve of
the central and the back temperature of the ablative surface of PR and
SZRx aerogel composites during the ablation process. The central tem-
perature of the ablative surface of the sample kept at about 1900 °C, and
the back temperature rise slowly. The back temperature of PR aerogel
composites at 60s was 338 °C, while that of SZR2 aerogel composites
was lower to 197 °C, showing efficient thermal insulation performance.

Fig. 8 showed the photos and microscopic morphology of the surface
of the aerogel composite sample after ablation. In the harsh heat flow
environment, the appearance of PR aerogel composite surface formed
wrinkles (Fig. 8a), while the surface of SZRx aerogel composite appeared
a layer of relatively dense white material after ablation, without obvious
wrinkles (Fig. 8e-i, m). The microscopic morphology of the surface of

the ablation center showed that the PR aerogel composite presented
many pore defects due to the thermal oxidation surface of the matrix, the
quartz fiber underwent obvious melting and few PyC particles remained
on its surface (Fig. 8b-d). The formation of wrinkles resulted from the
enrichment of the melt under the aerodynamic scouring of the surface,
which was difficult to produce effective thermal protection for the
interior of the composite, and ultimately leaded to the high ablation rate
of the composite. Although the surface of the ablation center of SZRO
aerogel composite also showed exposed fibers, there are many carbon
residues of matrix pyrolysis. Furthermore, the many fibers didn’t un-
dergo melting, and the surface was covered with white matter, which
was inferred that the pyrolysis product silicon dioxide attached to the
surface of the fiber and PyC (Fig. 8f-h), providing effective thermal
protection for the interior of the composite. This also confirms that
organosilicon hybrid phenolic resin has good antioxidant and ablation
resistance [20,28,29]. However, the ablation center of SZRO aerogel
composite was darker than the surrounding area, which may be ascribed
to that the white silicon dioxide in the ablation surface center was blown
to the edge by erosion of heat flow, severely weakening the thermal
protection effect of the ablation center. The silicon zirconium hybrid
phenolic aerogel composite SZR2 presents the dense and uniform white
ablative surface and the micro morphology of the ablation center does
not show obvious exposed fibers (Fig. 8j-1). Some small holes existed on
the surface of SZR2 due to the escape of pyrolysis gas, and some particles
are wrapped in the liquid phase. These particles may be composed of
zirconia and PyC, and the fiber surface is also wrapped by liquid and
particles. The fusion of liquid phase and particles on the ablated surface
not only produces effective thermal protection for the interior, but also
can resist the erosion of heat flow, which imply that the cooperation of
silicon zirconium can greatly improve the ablation and aerodynamic
exfoliation resistance of phenolic aerogel composites. With the
increasement of the relative content of zirconium, the ablation rate of
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Fig. 7. (a) Oxygen acetylene test device. (b) Linear and mass ablation rates of PR and SZRx aerogel composites. (c) Optical photos of the central section of RP and
SZR2 aerogel composites after ablation. (d) The front temperature and back temperature of RP and SZR2 aerogel composites during ablation.
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Fig. 8. Surface photos and microscopic morphology of PR aerogel composite (a-d), SZRO aerogel composites (e-h), SZR2 aerogel composite (i-1) and SZR4 aerogel
composites (m-p) after ablation.

SZR4 aerogel composites showed significantly increased. From the channel of heat and oxygen, finally the ablation rate increased.

microscopic morphology, large holes were observed on the ablation The phase evolution of PR and SZRx aerogel composites after abla-
surface, the liquid phase content decreases, and plenty particles gath- tion was studied by XRD and XPS analysis. As shown in Fig. 9b, the
ered to clusters (Fig. 8n-p), further the non-compact clusters formed the ablated surface of PR and SZRO aerogel composites only showed the
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Fig. 9. Surface elements relative content (a), XRD spectrums (b) of PR and SZRx aerogel composites after ablation.

broad peaks at 23-26°which correspond to the superposition of the
diffraction peaks of SiO2 and PyC, among which SiO, came from the
residual quartz fibers on the surface and the oxidation of the hybrid
element Si. Relatively, the ablated surfaces of SZR1~SZR4 also exhibi-
ted characteristic peaks attributed to t-ZrO, (PDF#72-1669) and m-
ZrOy (PDF#79-1767), and the intensity of the characteristic peaks
increased significantly with the decrease of Si/Zr ratio, indicating that
the zirconium element in the hybrid resin exists in the form of zirconia
after ablation (Fig. 9b). Furthermore, XPS results showed that the peak
of Si 2p gradually weakened at around 103eV, and the peak of Zr 3d [17]
gradually strengthened at 185-180eV as the Si/Zr ratio decreased
(Fig. 10a and c), which was similar to the changing trend of zirconia
peak in XRD (Fig. 9b). From the fitting of Si 2p peak, the silicon element
on the SZR2 ablated surface exists in the form of Si-O-Si (103.3 eV) [30]
and Si-C (101.9 eV) [31] (Fig. 10c and d), indicating that there was still
SiC on the ablated surface of the hybrid aerogel composite, which may
be caused by the thermal rearrangement of the chains of the silicon
hybrid phenolic or the carbothermal reaction of silicon.

In addition, the Si/Zr ratio also affects the degree of graphitization of
PyC on the ablated surface of composite materials. R (ID/IG) values of
Raman spectroscopy of all samples reflect on the degree of graphitiza-
tion of PyC. The smaller the R value represent the higher the degree of

graphitization of carbon [32]. From the change of R value (Fig. 10b), the
hybridization of silicon and zirconium can improve the graphitization
degree of pyrolysis carbon and reduce the R value of pyrolysis carbon
from the lowest of 2.09 to 1.62, indicating the synergistic catalytic effect
of silicon and zirconium on carbon graphitization. The degree of
graphitization is proportional to the oxidation resistance of PyC. How-
ever, as the Si/Zr ratio further decreased, the pyrolysis carbon R value
actually increased, which may be ascribed to the decrease in liquid
phase silica and increasement in zirconia, resulting in less graphite
carbon dissolved [33].

The relative content change of elements on the ablated surface of the
aerogel composite was collected by EDS. As shown in Fig. 9a the relative
content of carbon on the ablated surface has significant relationship
with the ablation rate. The samples with larger ablation rate usually
have less carbon residue on the surface, such as PR and SZR4 aerogel
composites, while the samples with higher carbon content, such as
SZR2, have lower ablation rate. This is ascribed to that more pyrolysis
carbon on the surface can consume more heat through oxidation and
reverse radiation, thereby reducing the erosion retreat of the surface
[34]. Additionally, the samples with silicon and zirconium content on
the surface within moderate range also showed lower ablation rates. The
microscopic morphology and energy spectrum analysis showed that
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Fig. 10. (a) (c) XPS of ablated surface of RP, SZRO, SZR2 and SZR4 aerogel composites.

High resolution spectra and fitted peaks of Si in SZR2.

(b) Raman spectrum of PR and SZRx aerogel composites after ablation. (d)
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SZR2 aerogel composite possessed the lowest ablation rate (Fig. 11a—c).
The liquid phase composed of SiO; and SiC evenly wrapped PyC and
zirconia particles, which formed dense carbon-containing composite
ceramic layer (C, SiOj, SiC and ZrO3) with sea-island like structure on
the ablation surface, forming the effective barrier for the ablation to
expand inward. Meanwhile, the pinning effect of zirconia particles on
the surface greatly improves the erosion resistance of the ablation layer.

Interestingly, although the ablation surface of SZR4 aerogel com-
posite also formed the similar structure, the relatively high zirconium
content in the matrix caused the enrichment of zirconia particles, and
the compactness of the ablation surface reduced due to the lack of liquid
phase, which may be the channel for the inward diffusion of heat and
oxygen (Fig. 11d-f). More importantly, the carbon ratio on the surface of
SZR4 was lower than that of SZR2, indicating that the low silicon zir-
conium ratio may lead to insufficient oxidation resistance and low car-
bon residue in the hybrid resin matrix, leading to the increasement of

Zirconia

- =
" particles
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ablation rate.

Based on the above analysis, the mechanism of ablation resistance of
PR and SZRx aerogel composites can be demonstrated (Fig. 12). The
oxyacetylene flame creates the harsh environment of high temperature,
aerodynamic exfoliation, and oxidation on the surface of composite
materials. In the process of high temperature ablation of PR aerogel
composites, the resin matrix undergoes pyrolysis, carbonization,
oxidation, and fiber melting, forming a porous ablation surface. Through
the hybridization modification of organic silicon, the oxidation resis-
tance of the matrix was significantly improved, and more PyC was
retained on the surface. The liquid phase developed by organic silicon
pyrolysis and oxidation forms the relatively dense ablation layer with
PyC and fibers, which reduce the ablation rate. However, most of the
liquid phase on the ablation center surface was washed to the sur-
rounding area, resulting in obvious exposed fibers on the surface of SZR0O
ablation center. The silicon zirconium hybrid phenolic aerogel
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Fig. 11. Surface micro morphology of ablation center of SZR2 aerogel composite (a), EDS results (b), element distribution (c). Surface micro morphology of ablation

center of SZR4 aerogel composite (d), EDS results (e), element distribution (f).
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composites were obtained by introducing zirconium element, the
chelating effect of zirconium element improves the compatibility of
organic silicon and phenolic, and further enhances the oxidation resis-
tance of the matrix and PyC residue. Zirconium was oxidized to zirconia
particles with high melting point at high temperature. The liquid phase
formed by organic silicon at high temperature wraps PyC and zirconia
particles to form the dense multiphase ceramic layer (PyC, SiO5, SiC and
Zr0O,) with sea-island like structure on the ablation surface, which form
effective thermal barrier and can resist aerodynamic exfoliation. The
synergistic effect of silicon and zirconium significantly improves the
ablation resistance of phenolic aerogel. However, when the Si/Zr ratio
was low, such as SZR4 aerogel composites with the Si/Zr ratio of 1:1,
due to the reduction of the oxidation resistance of the matrix, the con-
tent of PyC and liquid phase on the surface was reduced, and the
enriched zirconia forms the loose ablation layer, which increases the
ablation rate. Therefore, an efficient thermal protection barrier was
constructed on the surface of the phenolic aerogel composite with
appropriate Si/Zr ratio hybrid.

4. Conclusion

In this work, co-continuous structure SZRx hybrid phenolic resin
with adjustable Si/Zr ratio was successfully synthesized by two-step
method, and SZRx aerogel composites were prepared by the sol-gel.
SZRx aerogel exhibited low density, hydrophobicity, high thermal sta-
bility and excellent high-temperature oxidation resistance. The SZRx
aerogel composite showed excellent heat resistance and insulation
performance, with the linear ablation rate as low as 0.032 mm/s and the
back temperature below 200 °C under the heat flow ablation of 2.0 MW/
m?. Moreover , the Si/Zr ratio of 9:1 was set the appropriate ratio to
synergistically improve the oxidation resistance and erosion resistance

* Oxygen diffuses
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Ablation mechanism of hybrid resin aerogel composite.

of the composite. At this ratio, more PyC could be retained on the ab-
lated surface of the aerogel composite, and the dense multiphase
ceramic layer with sea-island-like structure composed of C, SiO3, SiC and
ZrOy can be formed, which can resist high-temperature ablation and
aerodynamic exfoliation. The SZRx aerogel composites exhibit excellent
integrated characteristics of heat protection and insulation, and have
great application potential in the field of light ablative heat protection.
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